интегралы:

0 голосов
49 просмотров

интегралы:

1) \int{\frac{1}{\sqrt[3]{x}+1}}\, dx \\ 2) \ind{\frac{2x-\sqrt{arcsin(x)}}{\sqrt{1-x^{2}}}}\, dx


Алгебра (31 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

∫dx/ (∛x +1)= замена :∛х=t, x=t³, dx=3t²dt =3∫t²dt / (t+1)=3∫(t-1+ 1/(t+1)) *dt= 3(t²/2-t+ln|t+1))+C=3/2*(∛x)²-3∛x+ln|∛x+1|+C

2)...=∫2x*dx/√(1-x²) +∫√arcsinx*d(arcsinx) =-∫d(1-x²) / (1-x²) +(arcsin²x)/2= ln|1-x²|+(arcsin²x)/2+

 

 

(835k баллов)