Решаю векторами.
Радиусы-векторы точек-вершин:
![\mathbf{r}_A = 6\mathbf{i} + 5\mathbf{j} \mathbf{r}_A = 6\mathbf{i} + 5\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_A+%3D+6%5Cmathbf%7Bi%7D+%2B+5%5Cmathbf%7Bj%7D)
![\mathbf{r}_B = 2\mathbf{i} - 4\mathbf{j} \mathbf{r}_B = 2\mathbf{i} - 4\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_B+%3D+2%5Cmathbf%7Bi%7D+-+4%5Cmathbf%7Bj%7D)
![\mathbf{r}_C = -2\mathbf{i} - 1\mathbf{j} \mathbf{r}_C = -2\mathbf{i} - 1\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_C+%3D+-2%5Cmathbf%7Bi%7D+-+1%5Cmathbf%7Bj%7D)
Векторы сторон треугольника:
![\mathbf{AB} = \mathbf{r}_B - \mathbf{r}_A = -4\mathbf{i} - 9\mathbf{j} \mathbf{AB} = \mathbf{r}_B - \mathbf{r}_A = -4\mathbf{i} - 9\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BAB%7D+%3D+%5Cmathbf%7Br%7D_B+-+%5Cmathbf%7Br%7D_A+%3D+-4%5Cmathbf%7Bi%7D+-+9%5Cmathbf%7Bj%7D)
![\mathbf{BC} = \mathbf{r}_C - \mathbf{r}_B = -4\mathbf{i} + 3\mathbf{j} \mathbf{BC} = \mathbf{r}_C - \mathbf{r}_B = -4\mathbf{i} + 3\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BBC%7D+%3D+%5Cmathbf%7Br%7D_C+-+%5Cmathbf%7Br%7D_B+%3D+-4%5Cmathbf%7Bi%7D+%2B+3%5Cmathbf%7Bj%7D)
![\mathbf{CA} = \mathbf{r}_A - \mathbf{r}_C = 8\mathbf{i} + 6\mathbf{j} \mathbf{CA} = \mathbf{r}_A - \mathbf{r}_C = 8\mathbf{i} + 6\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BCA%7D+%3D+%5Cmathbf%7Br%7D_A+-+%5Cmathbf%7Br%7D_C+%3D+8%5Cmathbf%7Bi%7D+%2B+6%5Cmathbf%7Bj%7D)
Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны.
Обозначив D — середина AB; E — середина BC; F — середина CA, находим радиусы-векторы середин сторон:
![\mathbf{r}_D = \mathbf{r}_A + \frac{1}{2} \mathbf{AB} = \left(6 - \frac{4}{2}\right)\mathbf{i} + \left(5 - \frac{9}{2}\right)\mathbf{j} = 4\mathbf{i} + 0,5\mathbf{j} \mathbf{r}_D = \mathbf{r}_A + \frac{1}{2} \mathbf{AB} = \left(6 - \frac{4}{2}\right)\mathbf{i} + \left(5 - \frac{9}{2}\right)\mathbf{j} = 4\mathbf{i} + 0,5\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_D+%3D+%5Cmathbf%7Br%7D_A+%2B+%5Cfrac%7B1%7D%7B2%7D+%5Cmathbf%7BAB%7D+%3D+%5Cleft%286+-+%5Cfrac%7B4%7D%7B2%7D%5Cright%29%5Cmathbf%7Bi%7D+%2B+%5Cleft%285+-+%5Cfrac%7B9%7D%7B2%7D%5Cright%29%5Cmathbf%7Bj%7D+%3D+4%5Cmathbf%7Bi%7D+%2B+0%2C5%5Cmathbf%7Bj%7D)
![\mathbf{r}_E = \mathbf{r}_B + \frac{1}{2} \mathbf{BC} = \left(2 - \frac{4}{2}\right)\mathbf{i} + \left(-4 + \frac{3}{2}\right)\mathbf{j} = 0\mathbf{i} - 2,5\mathbf{j} \mathbf{r}_E = \mathbf{r}_B + \frac{1}{2} \mathbf{BC} = \left(2 - \frac{4}{2}\right)\mathbf{i} + \left(-4 + \frac{3}{2}\right)\mathbf{j} = 0\mathbf{i} - 2,5\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_E+%3D+%5Cmathbf%7Br%7D_B+%2B+%5Cfrac%7B1%7D%7B2%7D+%5Cmathbf%7BBC%7D+%3D+%5Cleft%282+-+%5Cfrac%7B4%7D%7B2%7D%5Cright%29%5Cmathbf%7Bi%7D+%2B+%5Cleft%28-4+%2B+%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5Cmathbf%7Bj%7D+%3D+0%5Cmathbf%7Bi%7D+-+2%2C5%5Cmathbf%7Bj%7D)
![\mathbf{r}_F = \mathbf{r}_C + \frac{1}{2} \mathbf{CA} = \left(-2 + \frac{8}{2}\right)\mathbf{i} + \left(-1 + \frac{6}{2}\right)\mathbf{j} = 2\mathbf{i} + 2\mathbf{j} \mathbf{r}_F = \mathbf{r}_C + \frac{1}{2} \mathbf{CA} = \left(-2 + \frac{8}{2}\right)\mathbf{i} + \left(-1 + \frac{6}{2}\right)\mathbf{j} = 2\mathbf{i} + 2\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7Br%7D_F+%3D+%5Cmathbf%7Br%7D_C+%2B+%5Cfrac%7B1%7D%7B2%7D+%5Cmathbf%7BCA%7D+%3D+%5Cleft%28-2+%2B+%5Cfrac%7B8%7D%7B2%7D%5Cright%29%5Cmathbf%7Bi%7D+%2B+%5Cleft%28-1+%2B+%5Cfrac%7B6%7D%7B2%7D%5Cright%29%5Cmathbf%7Bj%7D+%3D+2%5Cmathbf%7Bi%7D+%2B+2%5Cmathbf%7Bj%7D)
Векторы медиан CD, AE и BF:
![\mathbf{CD} = \mathbf{r}_D - \mathbf{r}_C = 6\mathbf{i} + 1,5\mathbf{j} \mathbf{CD} = \mathbf{r}_D - \mathbf{r}_C = 6\mathbf{i} + 1,5\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BCD%7D+%3D+%5Cmathbf%7Br%7D_D+-+%5Cmathbf%7Br%7D_C+%3D+6%5Cmathbf%7Bi%7D+%2B+1%2C5%5Cmathbf%7Bj%7D)
![\mathbf{AE} = \mathbf{r}_E - \mathbf{r}_A = -6\mathbf{i} - 7,5\mathbf{j} \mathbf{AE} = \mathbf{r}_E - \mathbf{r}_A = -6\mathbf{i} - 7,5\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BAE%7D+%3D+%5Cmathbf%7Br%7D_E+-+%5Cmathbf%7Br%7D_A+%3D+-6%5Cmathbf%7Bi%7D+-+7%2C5%5Cmathbf%7Bj%7D)
![\mathbf{BF} = \mathbf{r}_F - \mathbf{r}_B = 0\mathbf{i} + 6\mathbf{j} \mathbf{BF} = \mathbf{r}_F - \mathbf{r}_B = 0\mathbf{i} + 6\mathbf{j}](https://tex.z-dn.net/?f=%5Cmathbf%7BBF%7D+%3D+%5Cmathbf%7Br%7D_F+-+%5Cmathbf%7Br%7D_B+%3D+0%5Cmathbf%7Bi%7D+%2B+6%5Cmathbf%7Bj%7D)
Длины медиан:
![CD = \sqrt{\mathbf{CD} \cdot \mathbf{CD}} = \sqrt{6^2 + 1,5^2} = \sqrt{38,25} CD = \sqrt{\mathbf{CD} \cdot \mathbf{CD}} = \sqrt{6^2 + 1,5^2} = \sqrt{38,25}](https://tex.z-dn.net/?f=CD+%3D+%5Csqrt%7B%5Cmathbf%7BCD%7D+%5Ccdot+%5Cmathbf%7BCD%7D%7D+%3D+%5Csqrt%7B6%5E2+%2B+1%2C5%5E2%7D+%3D+%5Csqrt%7B38%2C25%7D)
![AE = \sqrt{\mathbf{AE} \cdot \mathbf{AE}} = \sqrt{6^2 + 7,5^2} = \sqrt{92,25} AE = \sqrt{\mathbf{AE} \cdot \mathbf{AE}} = \sqrt{6^2 + 7,5^2} = \sqrt{92,25}](https://tex.z-dn.net/?f=AE+%3D+%5Csqrt%7B%5Cmathbf%7BAE%7D+%5Ccdot+%5Cmathbf%7BAE%7D%7D+%3D+%5Csqrt%7B6%5E2+%2B+7%2C5%5E2%7D+%3D+%5Csqrt%7B92%2C25%7D)
![BF = \sqrt{\mathbf{BF} \cdot \mathbf{DF}} = \sqrt{0^2 + 6^2} = 6 BF = \sqrt{\mathbf{BF} \cdot \mathbf{DF}} = \sqrt{0^2 + 6^2} = 6](https://tex.z-dn.net/?f=BF+%3D+%5Csqrt%7B%5Cmathbf%7BBF%7D+%5Ccdot+%5Cmathbf%7BDF%7D%7D+%3D+%5Csqrt%7B0%5E2+%2B+6%5E2%7D+%3D+6)