Вычислите ctg(t-3П),sin (t+2П),tg(t-П),если cos(t+2П)=-12\13,П
Cos(t+2πn)=cost cos(t+2π)=cost,πsint=-√(1-cos²t)=-√(1-144/169)=-√(25/169)=-5/13 1)ctg(x-πn)=ctgx ctg(t-3π)=ctgt=cost/sint=-12/13:(-5/13)=12/13*13/5=12/5 2)sin(x+2πn)=sinx sin(t+2π)=sint=-5/13 3)tg(x-πn)=tgx=sint/cost=-5/13:(-12/13)=5/13*13/12=5/12 tg(t-π)=tgt