3cos^2x+4sinxcosx+5sin^2x=2

0 голосов
127 просмотров

3cos^2x+4sinxcosx+5sin^2x=2


Алгебра (12 баллов) | 127 просмотров
Дан 1 ответ
0 голосов
3cos ^{2} x+4sinxcosx+5sin ^{2} x=2
3cos ^{2} x+4sinxcosx+5sin ^{2} x-2(sin ^{2} x+cos ^{2} x)=0
3cos ^{2} x+4sinxcosx+5sin ^{2} x-2sin ^{2} x-2cos ^{2} x=0
cos ^{2} x+4sinxcosx+3sin ^{2} x=0 |:cos ^{2} x,  (cos ^{2} x \neq 0)

1+4 \frac{sinx}{cosx} +3 \frac{sin^{2}x }{cos ^{2}x } =0

1+4tgx+3tg ^{2} x=0
tgx=y
3y ^{2} +4y+1=0
D = 4² - 4· 3·1 = 16 - 12 = 4
\sqrt{D} =4

y _{1} = \frac{-4+2}{6} = \frac{-2}{6} =- \frac{1}{3}

y _{2} = \frac{-4-2}{6} = \frac{-6}{6} =-1

\left \{ {{tgx=- \frac{1}{3} } \atop {tgx=-1}} \right.

x=-arctg \frac{1}{3} + \pi n, n∈Z
x=- \frac{ \pi }{4} + \pi m, m∈Z
(10.3k баллов)