1. Рассмотрим прямые а и b, пересекаемые секущей n. Отмеченные равные углы являются накрест лежащими. По признаку параллельных прямых, если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Следовательно, a II b
2. Рассмотрим прямые а и с, пересекаемые секущей m. Отмеченные равные углы также являются накрест лежащими. Следовательно, a II c
3. Получили b II a и c II a
Согласно следствию 2 из аксиомы о параллельных прямых, если две прямые параллельны третьей прямой, то они параллельны друг другу. Следовательно, b II c, что и требовалось доказать