Объем треугольной пирамиды равен 30. Плоскость проходит через сторону основания этой...

0 голосов
341 просмотров

Объем треугольной пирамиды равен 30. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 7÷8, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.


Геометрия (25 баллов) | 341 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть данная пирамида будет МАВС, а сечение её плоскостью - АВТ. 
МТ:ТС=7:8 
Плоскость разбила исходную пирамиду на две с общим основанием АВТ и вершинами С - в нижней и М- в верхней. 
Проведем в плоскости сечения прямую ТН, а из вершин образовавшихся пирамид их высоты СК и МЕ перпендикулярно к этой прямой, лежащей в плоскости сечения, а значит и перпендикулярно  плоскости их общего основания. 
Треугольники МЕТ и СТК прямоугольные с равными острыми углами МТЕ=СТК - они вертикальные.
Следовательно, эти треугольники подобны, и отношение их высот равно отношению их сторон, т.е. 
МЕ:СК=МТ:СТ=7:8 
Объем пирамиды равен 1/3 произведения её высоты на площадь основания. 
Основание у обеих пирамид общее, следовательно, их объемы относятся как 7:
Содержание одной части этого отношения равно 30:(7+8)=2 
Объем пирамид с равным основанием больше у той, чья высота больше.
 V САВТ=2*8=16 (ед. объема) 


image
(228k баллов)
0

спасибо)