5 уравнения только не через дискриминант

0 голосов
34 просмотров

5 уравнения только не через дискриминант


image

Алгебра (23 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
x^2 + 18 + 9x = 0

x^2 + 9x + 18 = 0

(x + 3)(x + 6) = 0

x + 3 = 0 , x + 6 = 0

x1 = -3 , x2 = -6

9x^2 + 16 = 24x
9x^2 - 24x + 16 = 0
x^2 - \frac{8x}{3} + \frac{16}{9} = 0
(x - \frac{4}{3})^2 = 0
x - \frac{4}{3} = 0
x1,2 = \frac{4}{3}

7x^2 = 3 - 20x

7x^2 + 20x - 3 = 0

(x + 3)(7x - 1) = 0

x + 3 = 0 , 7x - 1 = 0

x = -3 , 7x = 1
x1 = -3 , x2 = \frac{1}{7}

-6x^2 + 8x - 10 = 0
Решений нет.

x - 11x^2 = 0
-x(11x - 1) = 0 |*(-1)

x(11x - 1) = 0

x = 0 ; 11x = 1
x1 = 0 ; x2 = \frac{1}{11}

x^2 - 0,04 = 0
x^2 - \frac{1}{25} = 0
\frac{1}{25} (5x - 1)(5x + 1) = 0

(5x - 1)(5x + 1) = 0

5x - 1 = 0 ; 5x + 1 = 0

5x = 1 ; 5x = -1
x1 = \frac{1}{5} ; x2 = - \frac{1}{5}
x1 = 0.2 ; x2 = -0.2

2n^2 = 7n + 9

2n^2 - 7n - 9 = 0

(n + 1)(2n - 9) = 0

n + 1 = 0 ; 2n - 9 = 0

n =-1 ; 2n = 9
n1 = -1 ; n2 = \frac{9}{2}
n1 = -1 ; n2 = 4.5


(5.1k баллов)