2/(7^x -7) ≥ 5/(7^x -4)
2/(7^x -7) - 5/(7^x -4) ≥ 0,
(2*(7^x -4) -5*(7^x-7) )/(7^x -7)(7^x -4) ≥ 0,
(2*7^x -8 -5*7^x +35) /(7^x -7)(7^x -4) ≥ 0,
(-3*7^x + 27)/(7^x -7)(7^x -4) ≥ 0,Решаем методом интервалов:
-3*7^x +27 = 0, 7^x -7=0, 7^x -4 = 0
-3*7^x = -27 7^x = 7 7^x = 4
7^x = 9 x =1 xln7 = ln4
xln7 = ln9 x = ln4/ln7
x = ln9/ln7 x = 2ln2/ln7
x = 2ln3/ln7
( ln2 ~0,6931, ln3~1,0986, ln7~1,9459)