An=a1+(n-1)d;
a₃=a₁+2d;a₂=a₁+d;
a₃/a₂=3;⇒a₃=3·a₂;⇒a₁+2d=3a₁+3d⇒d=-2a₁;⇒
a₃=a₁-4a₁=-3a₁; a₂=a₁-2a₁=-a₁;
Sn=[2a₁+(n-1)d]·n/2;
Sn/a₃=40⇒Sn=40·a₃=40(-3a₃)=-120a₁
[2a₁+(n-1)·(-2a₁)]·n/2=-120a₁;
[2a₁-2n·a₁+2a₁]·n=-240a₁;
4a₁·n-2n²a₁+240a₁=0
n²-2n-120=0
n₁,₂=1⁺₋√(1+120)=1⁺₋11;
n>0
n=1+11=12