Решение
1) log₂ log₅ (5¹/⁸) = log₂ (1/8) log₅ 5 = log₂ 2⁻³ = - 3 log₂ 2 = - 3
2) log₃² log₁/₅ (1/125) = log₃² log₁/₅ (1/5)³ = log₃² 3 log₁/₅ (1/5) = 1
3) log₄ log₃ √81 = log₄ 2 log₃ 3 = 1/2
4) log₃¹/² log₁/₅ (1/125) = log₃¹/² log₁/₅ (1/5)³ = log₃¹/² 3 log₁/₅ (1/5) =
= 2* log₃¹/² (√3) = 2
5) log₈/₂₇ log₂₅ 125 = log₈/₂₇ log₅² 5³ = log₈/₂₇(3/2) log₅ 5 =
log(₂/₃)³ (3/2) = - log(₂/₃)³ (2/3) = - 1/3