Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение
где под
подразумевается квадрат переменной
т.е.
а его корнями
– квадраты искомых корней, если они различны, или его чётным корнем
если корень биквадратного трёхчлена
– единственный.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле
тогда
Потребуем, чтобы
откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при
а корень биквадратного трёхчлена станет чётным
давая два искомых корня
Это значение
как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней
всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней
по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно
Отсюда следует, что правый квадрат искомых корней
– всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки
А значит, значение всего трёхчлена
взятое от
должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
Отсюда:
;
;
7 " alt=" a > 7 " align="absmiddle" class="latex-formula"> ;
О т в е т :