Сторона AC треугольника ABC пересекает окружность в точках M и N ,находящихся от вершины...

0 голосов
55 просмотров

Сторона AC треугольника ABC пересекает окружность в точках M и N ,находящихся от вершины A на расстоянии 9 и 36 соответственно .Окружность имеет точку касания со стороной AB .Косинус угла при вершине A равен √15÷4 .Найдите радиус окружности


Геометрия (1.5k баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Центр О окружности лежит на перпендикуляре, проведенном к середине отрезка MN.
Обозначим:
- точку касания окружностью стороны АВ точкой К,
- точки пересечения осью окружности, перпендикулярной стороне АС, со стороной АС за точку Р, со стороной АВ за точку Е,
- отрезок ОР за х,
- отрезок РЕ за в.
Так как окружность проходит через точки М и К, то МО и КО как радиусы равны.
Из треугольников ОМР и ОКЕ составим уравнение:
(b+x)*cosA= \sqrt{x^2+13.5^2}
Возведём в квадрат и получаем квадратное уравнение:
(1 - cos²A)*x²-2bcos²A*x+(13.5²-b²cos²А) = 0.
Значение в находим: в = 22,5*tgA = 22.5*((1-cos²A)/cosA) = 5,809475.
Подставив значения в и cosA, получаем:
0,0625х² - 10,892766х + 150,609375 = 0.
Отсюда х₁ = 15,1421,
              х₂ = 159,142 - этот корень отбрасываем, так как точка К выходит за пределы треугольника АВС.
Тогда радиус равен:
 R=√(13.5² + x²) = √(13.5²+15.1421²) = 20,286281.





(309k баллов)
0

я в итоге решил эту задачу ,правда несколько по другому ,сложность заключалась в том ,что в задачнике ответ 16 

0

у меня ответ получился приблизительно 20,2

0

Значение х = 15,1421 как корня квадратного уравнения проверено с помощью программы WolfrmAlpha. Если правильно записано задание, то указанный ответ проверен графически в АвтоКАДе.

0

задание взято из ОГЭ племянницы и ответ то же ,я решал через теорему касательной и секущей проведенных из точки ,лежащей вне окружности ,затем Пифагор ,тригнометрия и в итоге нашёл радиус через сторону и синус противолежащего угла вписанного треугольника,так же возможно решение через центральный угол .Если начертить с условием R=16 ,то угол будет больше заданного ,стало быть ошибка в ответе задачника . 

0

Позже я нашёл простое решение, используя теорему касательной и секущей. Касательная АК=корень(9*36)=18. Отрезок касательной КЕ (до оси окружности) равен АЕ-АК= 22,5/cosA-18 = 23.23790008-18=
5.237900077.Радиус равен этой величине, делённой на тангенс угла КОЕ (он равен углу А). R=5.237900077
/0.25819889=20.28629977.

0

Разница с выше приведенным ответом только в 5 знаке после запятой (меньше вычислений - меньшая погрешность).