Пусть АВ и АС — касательные к окружности О
Требуется доказать, что АВ =АС и ОА является биссектрисой угла А, т. е. / 1 = / 2.
Треугольники ОВА и ОСА прямоугольные, так как касательные АВ и АС перпендикулярны к радиусам ОВ и ОС в точках В и С. Сторона ОА общая. Катеты ОВ и ОС равны, как радиусы одного и того же круга. Прямоугольные треугольники ОВА и ОСА равны по гипотенузе и катету. Отсюда АВ = АС и / 1 = / 2, т. е. ОА есть биссектриса угла А.