Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку...

0 голосов
37 просмотров

Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ( Ответ 120)
Нужен рисунок


Геометрия (5.0k баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 
-----------
Центр окружности лежит на АВ, следовательно, АD- диаметр. 
Проведем  радиус ОС . 
Т.к. С - точка касания, ОС ⊥ АС.
Треугольник АОС - прямоугольный. 
ОС=ОВ=ОD=r АD:DB=1:2 ⇒
AD=DO=OB=r 
В прямоугольном треугольнике АСD гипотенуза
AO=2 r=2 OC ⇒ 
sin∠OАС= OС:АО=1/2  ⇒ 
Угол ОАС=30º,⇒ 
угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º
Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ 
Больший угол АСВ треугольника АВС равен 
∠АСВ=∠АСО+∠ВСО=90º+30º=120º

image
(228k баллов)