Найти наибольшее и наименьшее значение функции ** отрезке F(x)=x^3-3x^2-9x+35 [-4:4]...

0 голосов
50 просмотров

Найти наибольшее и наименьшее значение функции на отрезке
F(x)=x^3-3x^2-9x+35
[-4:4]


F(x)=3^3+9x^2-24x+10
[0;3]


Алгебра (174 баллов) | 50 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1     x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41   наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40  -   наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8

F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15

выбираем из них наибольшее и наименьшее

2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4     x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку

F(0)=10   - наименьшее
F(3)=3³+9·3²-24·3+10=46   - наибольшее

(414k баллов)