2) По т. Пифагора находится:
см
3) Рисунок во вложении, в принципе всё понятно:
В равнобедренных прямоугольных треугольниках острые углы при основании равны 45° (всё обозначено на рисунке). Угол между прямой BD и плоскостью АВС - это угол между BD и её проекцией на плоск. АВС. Этой проекцией является ВС.
∠DBC=45° - и есть искомый угол.
1) Не совсем понятно, правда, зачем в условии вся эта заморочка с плоскостями, можно было и параллельными отрезками обойтись.
Если ΔАВС - равносторонний, то АВ=ВС=АС=12 см
Также, если
, то
см
Если по условию плоскости
и
параллельны ВС, то все острые углы на рисунке равны 60°, значит все треугольники подобны и равносторонние.
Все стороны нужного нам треугольника равны 4, значит
см