Из пунктов A и B, расстояние между которыми 19 км, вышли одновременно навстречу друг...

0 голосов
65 просмотров

Из пунктов A и B, расстояние между которыми 19 км, вышли одновременно навстречу друг другу два туриста и встретились в 9 км от пункта A. Найдите скорость туриста, вышедшего из пункта A, если известно, что он шёл со скоростью, на 1 км/ч большей, чем другой турист, и сделал в пути 30– минутный привал.


Алгебра (12 баллов) | 65 просмотров
Дан 1 ответ
0 голосов

Пусть х км/ч скорость туриста, вышедшего из В, тогда скорость туриста, вышедшего из А х+1 км/ч. Турист вышедший из А потратил 9/(х+1) + 1/2 часов, а турист , вышедший из В, потратил 10/х. Составим и решим уравнение:

9/(х+1) + 1/2 = 10/х

переносим все в левую часть, приводим к общему знаменателю, и должно получится примерно следующее: 

(х²-х-20)/(2х(х+1))   ОДЗ: х≠0, -1

решаем квадратное уравнение: 

D=1+80=81=9²

корни уравнения : 5 и -4 (-4 не подходит по смыслу задачи)

Значит, скорость вышедшего из В равна 5 км/ч, тогда скорость туриста, вышедшего из А, равна 5+1 = 6км/ч

Ответ: 6 км/ч

(1.1k баллов)