1+(1/2)log(3^1/2,(x+5)/(x+3))>=log(9,(x+1)^2)

0 голосов
67 просмотров

1+(1/2)log(3^1/2,(x+5)/(x+3))>=log(9,(x+1)^2)


Алгебра (2.6k баллов) | 67 просмотров
Дан 1 ответ
0 голосов
Правильный ответ


1 + \frac{1}{2} \log_{ \sqrt{3} } { ( \frac{x+5}{x+3} ) } \geq \log_9 {(x+1)^2} \ ;


ОДЗ:

image 0 \ , \\\\ (x+1)^2 > 0 \ ; \end{array}\right " alt=" \left\{\begin{array}{l} \frac{x+5}{x+3} > 0 \ , \\\\ (x+1)^2 > 0 \ ; \end{array}\right " align="absmiddle" class="latex-formula">

image 0 \ , \\\\ x \neq -1 \ ; \end{array}\right " alt=" \left\{\begin{array}{l} x \neq -3 \ , \\\\ \frac{x+5}{x+3} (x+3)^2 > 0 \ , \\\\ x \neq -1 \ ; \end{array}\right " align="absmiddle" class="latex-formula">

image 0 \ ; \end{array}\right " alt=" \left\{\begin{array}{l} x \notin \{ -3 , -1 \} \ , \\\\ ( x + 3 ) ( x + 5 ) > 0 \ ; \end{array}\right " align="absmiddle" class="latex-formula">

\left\{\begin{array}{l} x \notin \{ -3 , -1 \} \ , \\ x \notin [ -5 ; -3 ] \ ; \end{array}\right

x \notin \{ [ -5 ; -3 ] \cup \{ -1 \} \} \ ;


Решение:

1 + \log_{ \sqrt{3} } { \sqrt{ \frac{x+5}{x+3} } } \geq \log_{ \sqrt{9} } { \sqrt{ ( x + 1 )^2 } } \ ;

\log_3 {3} + \log_3 { \frac{x+5}{x+3} } \geq \log_3 { |x+1| } \ ;

\log_3 { ( 3 \cdot \frac{x+5}{x+3} ) } \geq \log_3 { |x+1| } \ ;

3 \cdot \frac{x+5}{x+3} \geq |x+1| \ ;

image -1 \ , \\ 3 (x+5) \geq (x+1)(x+3) \ ; \end{array}\right \end{array}\right " alt=" \left[\begin{array}{l} \left\{\begin{array}{l} x < -5 \ , \\ 3 ( x + 5 ) \leq -(x+1)(x+3) \ ; \end{array}\right \\\\ \left\{\begin{array}{l} -3 < x < -1 \ , \\ 3 ( x + 5 ) \geq -(x+1)(x+3) \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x > -1 \ , \\ 3 (x+5) \geq (x+1)(x+3) \ ; \end{array}\right \end{array}\right " align="absmiddle" class="latex-formula">

image -1 \ , \\ 3x + 15 \geq x^2 + 4x + 3 \ ; \end{array}\right \end{array}\right " alt=" \left[\begin{array}{l} \left\{\begin{array}{l} x < -5 \ , \\ 3x + 15 + x^2 + 4x + 3 \leq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} -3 < x < -1 \ , \\ 3x + 15 + x^2 + 4x + 3 \geq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x > -1 \ , \\ 3x + 15 \geq x^2 + 4x + 3 \ ; \end{array}\right \end{array}\right " align="absmiddle" class="latex-formula">

image -1 \ , \\ x^2 + x - 12 \leq 0 \ ; \end{array}\right \end{array}\right " alt=" \left[\begin{array}{l} \left\{\begin{array}{l} x < -5 \ , \\ x^2 + 7x + 18 \leq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} -3 < x < -1 \ , \\ x^2 + 7x + 18 \geq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x > -1 \ , \\ x^2 + x - 12 \leq 0 \ ; \end{array}\right \end{array}\right " align="absmiddle" class="latex-formula">

image -1 \ , \\ x^2 + 2 \cdot x \cdot \frac{1}{2} + ( \frac{1}{2} )^2 - 12 - \frac{1}{4} \leq 0 \ ; \end{array}\right \end{array}\right " alt=" \left[\begin{array}{l} \left\{\begin{array}{l} x < -5 \ , \\ x^2 + 2 \cdot x \cdot \frac{7}{2} + ( \frac{7}{2} )^2 + 18 - \frac{49}{4} \leq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} -3 < x < -1 \ , \\ x^2 + 2 \cdot x \cdot \frac{7}{2} + ( \frac{7}{2} )^2 + 18 - \frac{49}{4} \geq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x > -1 \ , \\ x^2 + 2 \cdot x \cdot \frac{1}{2} + ( \frac{1}{2} )^2 - 12 - \frac{1}{4} \leq 0 \ ; \end{array}\right \end{array}\right " align="absmiddle" class="latex-formula">

image -1 \ , \\ ( x + \frac{1}{2} )^2 \leq \frac{49}{4} \ ; \end{array}\right \end{array}\right " alt=" \left[\begin{array}{l} \left\{\begin{array}{l} x < -5 \ , \\ ( x + \frac{7}{2} )^2 + 18 - 12 \frac{1}{4} \leq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} -3 < x < -1 \ , \\ ( x + \frac{7}{2} )^2 + 18 - 12 \frac{1}{4} \geq 0 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x > -1 \ , \\ ( x + \frac{1}{2} )^2 \leq \frac{49}{4} \ ; \end{array}\right \end{array}\right " align="absmiddle" class="latex-formula">

<img src="https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bl%7D+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+x+%3C+-5+%5C+%2C+%5C%5C+%28+x+%2B+%5Cfrac%7B7%7D%7B2%7D+%29%5E2+%5Cleq+-+5+%5Cfrac%7B3%7D%7B4%7D+%5C+%3B+%5Cend%7Barray%7D%5Cright+%5C%5C%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+-3+%3C+x+%3C+-1+%5C+%2C+%5C%5C+%28+x+%2B+%5Cfrac%7B7%7D%7B2%7D+%29%5E2+%5Cgeq+-+5+%5Cfrac%7B3%7D%7B4%7D+%5C+%3B+%5Cend%7Barray%7D%5Cright+%5C%5C%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D+x+%3E+-1+%5C+%2C+%5C%5C+%7C+x+%2B+%5Cfrac%7B1%7D%7B2%7D+%7C+%5Cleq+%5Cfrac%7B7%7D%7B2%7D+%5C+%3B+%5Cend%7Barray%7D%5Cright+%5Cend%7Barray%7D%5Cright+" id="TexFormula16" title=" \left[\begin{array}{l} \left\{\begin{array}{l} x <
(8.4k баллов)
0

Спасибо))