Найдите корень уравнения arccos4x+arccos2x=π/3
Cos(arccos4x+arccos2x)=cosπ/3 cos(arccos4x)cos(arccos2x)-sin(arccos4x)sin(arccos2x)=1/2 4x*2x-√(1-16x²)*√(1-4x²)=1/2 8x²-1/2=√(1-20x²+64x^4) 64x^4-8x²+1/4=1-20x²+64x^4 20x²-8x²=3/4 12x²=3/4 x²=3/4:12 x²=1/16 x=-1/4 x=1/4