1. Исследовать функцию и построить график y(x)=(2x-3)/(4x+5) Огромная просьба помочь...

0 голосов
54 просмотров

1. Исследовать функцию и построить график y(x)=(2x-3)/(4x+5)
Огромная просьба помочь решить задание, которое выполняется следующим образом:
1) Находим область определения
2) Находим точки пересечения с осями
3) Исследуем функцию на парность или непарность
4) Исследуем функцию на монотонность
5) Находим экстремумы функции
6) Исследуем функции на выпуклость, вогнутость
7) Находим асимптоты графика функции
8) Можно найти дополнительные точки и построить график
2. Найти: а) наибольшее и наименьшее значение функции в замкнутой область, ограниченной заданными линиями; б) экстремумы функций
z=x^2+y^2-xy+x+y, x=0, y=0, x+y=3


Математика (22 баллов) | 54 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль).
2) Находим точки пересечения с осями:
х = 0  у = -3/5 это точка пересечения с осью у.
у = 0   надо числитель приравнять 0:  2х - 3 = 0   х = 3/2   это точка пересечения с осью х.
3) Исследуем функцию на парность или непарность:
Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). 
Правда, чаще встречается название этих свойств функции как чётность и нечётность.
2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной.
4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает.
Если производная положительна, то функция возрастает и наоборот.
\frac{d}{dx} ( \frac{2x-3}{4x+5} )= \frac{22}{(4x+5)^2}.
Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4).
5) Находим экстремумы функции:
Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума.
6) Исследуем функции на выпуклость, вогнутость:
Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая.
Вторая производная равна f''= \frac{-176}{(4x+5)^3}.
При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута.
7) Находим асимптоты графика функции:
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева
8) Можно найти дополнительные точки и построить график
График и таблица точек приведены в приложении.


image
(309k баллов)