Докажите что у равных треугольников ABC и A1B1C1 биссектрисы проведенные из вершин A и A1...

0 голосов
62 просмотров

Докажите что у равных треугольников ABC и A1B1C1 биссектрисы проведенные из вершин A и A1 равны.


Геометрия (93 баллов) | 62 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Вообще-то , фигуры равны, если они совпадают при наложении, но тогда и все их элементы совпадают. Однако, если такого рассуждения, почему-то, недостаточно, то заметим, что треугольники  АНС и А1Н1С1 равны по второму признаку ( стороне и двум прилежащим углам). Здесь АН иА1Н1 - соответствующие биссектрисы. В самом деле, по условию  АС=А1С1,
Угол С=углу С1и угол НАС=углу Н1А1С1 как половины равных углов.
Значит и АН=А1Н1, как соответствующие стороны равных треугольников, что и требовалось.

(62.2k баллов)