1) Заданы функция y=f(x) и два значения аргумента x1 и x2. Требуется: а) установить,...

0 голосов
136 просмотров

1) Заданы функция y=f(x) и два значения аргумента x1 и x2. Требуется: а) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента. б) сделать схематический чертеж: f(x)= 4x/x-5; x1=3; x2=5.
2)исследовать данные функции на непрерывность и построить их графики. Найти скачок функции в точках разрыва:
y=\sqrt{1-x^2} если x\leq 0; если 0 меньше чем x \leq 2; x-2 если х больше 2


Математика (12 баллов) | 136 просмотров
Дан 1 ответ
0 голосов
1. Для первого значения аргумента функция является непрерывной, т.к. подставляя значения аргумента в уравнение получим: 9/2 - это число, слудовательно, условие существования функции соблюдено. Для второго - разрывна, так как знаменатель оюращается в ноль, на ноль делить нельзя в школьной программе.2. Из последнего предложение следует, что точка 2 - точка разрыва функции, тогда сможем найти лево- и правосторонние пределы:  lim x to 2- =  9/ 0- = - бесконечностьlim х to 2+ = 9/0+ = + бесконечность
(70 баллов)