А(4;-6) В(6;4 корень из 6) В задачах 36—40 даны координаты точек А (х1;у1) и В (х2;y2)....

0 голосов
49 просмотров

А(4;-6) В(6;4 корень из 6)
В задачах 36—40 даны координаты точек А (х1;у1) и В (х2;y2). Требуется: 1) составить каноническое уравнение гиперболы, проходящей через данные точки А и В, если фокусы гиперболы расположены на оси абсцисс; 2) найти полуоси, фокусы, эксцентриситет и уравнения асимптот этой гиперболы; 3) найти все точки пересечения гиперболы с окружностью с центром в начале координат, если эта окружность проходит через фокусы гиперболы; 4) построить гиперболу, ее асимптоты и окружность


Математика (294 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Составить каноническое уравнение гиперболы, проходящей через данные точки А и В, если фокусы гиперболы расположены на оси абсцисс. А(4;-6), В(6;4√6)

Каноническое уравнение гиперболы имеет вид:
\frac{x^2}{a^2}- \frac{y^2}{b^2}=1.
Подставим координаты известных точек:
\frac{16}{a^2} - \frac{36}{b^2}=1,
\frac{36}{a^2}- \frac{96}{b^2}=1.
Приводим к общему знаменателю и получаем систему:
{16b
² - 36a² = a²b²,
{36b² - 96a² = a²b².
Отсюда 16b² - 36a² = 36b² - 96a² 
               60a² = 20b²
                    b² = 3a².
Заменим b² в уравнении гиперболы:
\frac{16}{a^2}- \frac{36}{3a^2} =1,
\frac{16}{a^2}- \frac{12}{a^2}=1,
a² = 4,
b² = 3*4 = 12.

Ответ: \frac{x^2}{4}- \frac{y^2}{12}=1

2) Найти полуоси, фокусы, эксцентриситет и уравнения асимптот этой гиперболы.

a - действительная полуось, b - мнимая полуось гиперболы.
Они уже найдены: 
a² = 4, а = +-2
b² = 3*4. b = +-2√3.
c - фокусное расстояние. c = √(a² + b²) = √(4 + 12) = √16 = +-4.
Координаты фокусов:
F
₁(-4;0), F₂(4;0).
Точки A₁(-2;0) и A₂(2;0) (называются вершинами гиперболы, точка O – центром гиперболы.
Эксцентриситет ε = c / a = 4 / 2 = 2
Асимптоты y = +-(b / a).
y
₁ = (2√3) / 2 = √3
y₂ = -(2√3) / 2 = -√3.

3) Найти все точки пересечения гиперболы с окружностью с центром в начале координат, если эта окружность проходит через фокусы гиперболы.
Для этого надо решить систему уравнений гиперболы и окружности.
\left \{ {{\frac{x^2}{4}- \frac{y^2}{12}=1 } \atop {x^2+y^2=16}}
Ответ: х = +-√7
            у = +-3.

4) Построить гиперболу, ее асимптоты и окружность - смотри приложение (асимптоты не показаны - самому дополнить).

(309k баллов)
0

Во второй вопрос надо внести изменение: в уравнениях асимптот пропущена буква"х".