Решить с рисунком. Даю 20 баллов, задача за 8 класс На окружности, описанной около равностороннего треугольника АВС, взята произвольная точка М, отличная от А, В и С. Доказать, что один из отрезков АМ, АВ, АС равен сумме двух других.
АВ=АС --треугольник ведь равносторонний)))
теоретически нам надо доказать, что отрезок AM = AB+AC
условие не верно,МА,МВ и МС?
получилось!
Условие верно
верно то,что я доказал,если М взять очень близко к А,то АМ будет очеь близко к нулю и не может быть равным АВ+АС
а через теорему Птолемея это не решить? Задача из этой темы
Зачем бить из пушки по воробью?
Да,по Птолемею проще-АМ*ВС=ВМ*АС+АВ*МС,осталось только сократить
фото::::::::::::::::::::::::::::::::
Значит, условие врёт. Спасибо.