Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов, то есть
BD^2 = AD * CD
Отсюда AD = BD^2 / CD = 24^2 / 18 = 32
Гипотенуза AC = AD + CD = 32 + 18 = 50
Из треугольника CDB по теореме Пифагора находим:

Из треугольника ABC по теореме Пифагора находим:


Ответ: AB = 40; Cos A = 0,8