Две окружности с центрами в точках О2 и О1 пересекаются в точках А и В.Каждая из них...

0 голосов
145 просмотров

Две окружности с центрами в точках О2 и О1 пересекаются в точках А и В.Каждая из них проходит черец центр другой.Доказать что АВ является биссектрисой угла О1АО2.

Помогите пожалуйста.


Геометрия (15 баллов) | 145 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

То, что каждая проходит через центр другой, означает, что у окружностей равные радиусы. Тогда (см. рисунок) равны равнобедренные треугольники AO1B, AO2B (например, по трем сторонам), и углы O1AB  и O2AB равны.

(148k баллов)
0 голосов

Две окружности с центрами в точках О2 и О1 пересекаются в точках А и В.Каждая из них проходит черец центр другой.Доказать что АВ является биссектрисой угла О1АО2.

(20 баллов)