Тригонометрическое уравнение.

0 голосов
32 просмотров

Тригонометрическое уравнение.
cos4x-sin5x=0


Алгебра (556 баллов) | 32 просмотров
Дан 1 ответ
0 голосов

Сos4x - Cos(\pi /2 -5x) = 0
-2Sin(2x+\pi /4 -2,5x)Sin2x -\pi /4 +2,5x) = 0
a) Sin(\pi /4 -0,5x) = 0 ,    
\pi /4 -0,5x = \pi n, nЄZ
0,5x = \pi /4 + \pi n, nЄZ
x = \pi /2 + 2 \pi n, nЄZ
б)  Sin(4,5x-\pi /4) = 0
4,5х -\pi /4\pi n, n ЄZ
4,5x = \pi /4 + \pi n, nЄZ
x= \pi /18 +2 \pi n/9, nЄZ