Помогите, пожалуйста, решить. Решить уравнение х^4 + x^3 – 10x^2 + x + 1=0

0 голосов
28 просмотров

Помогите, пожалуйста, решить.
Решить уравнение х^4 + x^3 – 10x^2 + x + 1=0


Алгебра (338 баллов) | 28 просмотров
0

А на какие члены Вы разложили это выражение перед тем как сгрупировать

Дан 1 ответ
0 голосов
Правильный ответ
x^4 + x^3 - 10x^2 + x + 1 = 0

(x^2 - 3x + 1)(x^2 + 4x + 1) = 0

x^2 - 3x + 1 = 0;x^2 + 4x + 1 = 0

x^2 - 3x + \frac{9}{4} = \frac{5}{4} ; x^2 + 4x + 1 = 0

(x - 1,5)^2 = 1,25 ; x^2 + 4x + 4 = 3

x1 = 1,5 + \frac{ \sqrt{5} }{2} ; x2 = 1,5 - \frac{ \sqrt{5} }{2} ; x3,4 = (x+2)^2 = 3

Преобразуем x3,4:

x3 = \sqrt{3} - 2 ; x4 = - 2 - \sqrt{3}

Получаем:

x1 = 1,5 + \frac{ \sqrt{5} }{2} ; x2 = 1,5 - \frac{ \sqrt{5} }{2} ; x3 = \sqrt{3} - 2 ; x4 = -2 - \sqrt{3} 
 

(5.1k баллов)
0

Спасибо

0

А на какие члены Вы разложили это выражение перед тем как сгрупировать