Равнобокая трапеция описана около окружности с радиусом 12дм.Точка касания делит ее...

0 голосов
290 просмотров

Равнобокая трапеция описана около окружности с радиусом 12дм.Точка касания делит ее боковую строну в отношении 9:4.Найдите среднюю линию трапеции


Геометрия (126 баллов) | 290 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обозначим отрезки, на которые делит точка касания боковую сторону 4х и 9х
По свойству касательной к окружности, проведенных из одной точки, отрезки касательных равны между собой ( см. на рисунке 1, синие и зеленые отрезки)
Поэтому верхнее основание 8х, нижнее основание 18х
Проведем высоту из вершины верхнего основания на нижнее, получим прямоугольный треугольник ( см. рисунок 2)
с гипотенузой 13х (боковая сторона)
и катетом 5х( полуразность оснований)

По теореме Пифагора 
h²=(13x)²-(5x)²=144x²
h=12x
По условию
h=2r=24 дм

12х=24
х=2

a=8x=8·2=16 дм
b=18x=18·2=36 дм

средняя линия    (a+b)/2=(16+36)/2=26 дм


image
image
(414k баллов)