Решение
12) ( log₂² 3 - 2log₂ 3 + 1)¹/² - log₂ (12√2) = [(log₂ 3 - 1)²]¹/² - log₂ (12√2) =
= log₂ 3 - 1 - log₂ (12√2) = log₂ 3 - log₂ 2 - log₂ (12√2) =
= log₂ 3 / (2*12√2) = log₂ 1 / (8√2) = log₂(2⁻³ * 2⁻¹/²) = log₂ 2⁻⁷/² =
= (- 3,5) * log₂ 2 = - 3,5
13) 6 * log₂ 5³ * log₅ 2 log₂ 2 + (2*5)^(lg7) = 6 * 3 * log₂ 5 * log₅ 2 log₂ 2 +
+ 10^(lg7) =18 + 7 = 25