Y=tg^2(3x)
y= tg(3x)* tg(3x)
(ab)' = a'b+ab'
y' = 3tg(3x)/cos^2(3x) + 3tg(3x)/cos^2(3x)
= 6tg(3x)/cos^2(3x)
y = (3x^2-2)*cos3x
y' = 6x*cos(3x) + 3*(3x^2-2)/-sin(3x)
y=e^(1-4x)*√2x+5
y'=-4e^(1-4x)*√2x+5 + e^(1-4x)* (1/√2x+5)
y = sin4x/(x+3) = sin4x * 1/(x+3)
y' = 4cos4x/(x+3) + sin4x*(-1) * 1/(x+3)^2 = 4cos4x/(x+3) -sin4x/(x+3)^2
y= arccos4x/(1-5x) = arccos4x * 1/(1-5x)
y' = (-4/√(1-16x^2)) * 1/(1-5x) + 5*arccos4x*1/(1-5x)^2