Найдите все пары натуральных чисел (x,y), для которых выполнено равенство 2x^2 + y^2= 2xy...

0 голосов
54 просмотров

Найдите все пары натуральных чисел (x,y), для которых выполнено равенство 2x^2 + y^2= 2xy + 4x .


Алгебра (1.3k баллов) | 54 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Запишем уравнение в виде (x-y)²+(x-2)²=4. Если сумма квадратов двух целых чисел равна 4, то эти числа могут быть только 0 и ±2. Значит, либо x-2=0 и x-y=±2,  либо  x-2=±2 и x-y=0.  Т.е. подходят пары (2;0), (2;4), (0;0), (4;4). Натуральные из них только (2;4) и (4;4).

(960 баллов)