Lim((2√(x+3)-4)/(x-1))=(2*√(1+3)-4)/(1-1)=0/0
x->1
lim((2√(x+3)-4)/(x-1))=
x->1
=lim((2√(x+3)-4)*(2√(x+3)+4))/((x-1)*(2√(x+3)+4))=
x->1
=lim((2√(x+3))²-4²)/((x-1)*(2√(x+3)+4)=
x->1
=lim(4*(x+3)-16)/((x-1)*(2√(x+3)+4))=
x->1
=lim(4x-4)/((x-1)*(2√(x+3)+4))=
x->1
=lim(4*(x-1))/((x-1)*(2(√(x+1)+2))=
x->1
=lim4/2(√(x+3)+2)=lim2/(√(x+3)+2)=2/(√(1+3)+2)=2/4=1/2=0,5
x->1