Y =(1/3)x³ +(1/2)x²-12x +1 , x ∈[ 0 ;6]
y(0) =(1/3)*0³ +(1/2)*0²-12*0 +1 =1 ;
y(6) = (1/3)*6³ +(1/2)*6²-12*6 +1 =72 +18 -72+1 =19.
---
y ' =((1/3)x³ +(1/2)x²-12x +1 ) =x² +x -12 ;
y ' =0 ⇒ x² +x -12=0 ⇒ x₁= -4 ∉ [ 0 ;6] , x₂= 3.
y(3) = (1/3)*3³ +(1/2)*3²-12*3 +1 =9 +4,5 -36 +1 = -21,5.
Сравнивая значения y(0) , y(6) и y(3) получаем :
min(y) =y(3)= -21,5.
max(y) =y(6)= 19.
* * * * * * *
y = - 3x² -x³ , x ∈[ -1 ;2] .
y(-1) = -3*(-1)² -(-1)³ = -3+1 = -2.
y(2) = -3*2² -2³ =-12 -8 = -20 .
---
y '= (- 3x² -x³) = -6x -3x² = -3x(x+2) .
y ' =0 ⇒ -3x(x+2) =0 ⇒ x₁= 0 , x₂ = -2 ∉ [ -1 ;2] .
y(0) = -3*0² -0³ =0 .
Сравнивая значения y(-1) , y(2) и y(0) получаем :
min(y) =y(2)= - 20.
max(y) =y(0)= 0.