3\\ \log^2_{0,5}x-2\log_{0,5}x>3\\ \log^2_{0,5}x-2\log_{0,5}x-3=0\\ \log_{0,5}x=t,\;\log^2_{0,5}x=t^2\\ t^2-2t-3=0\\ D=16\\ t_1=-1,\;t_2=3\\ \log_{0,5}x=-1\Rightarrow x=0,5^{-1}=2\\ \log_{0,5}x=3\Rightarrow x=0,5^3=0,125=\frac18\\ x\in(0;\frac18)\cup(2;+\infty)" alt="d)\;\log^2_{0,5}x-\log_{0,5}x^2>3\\ \log^2_{0,5}x-2\log_{0,5}x>3\\ \log^2_{0,5}x-2\log_{0,5}x-3=0\\ \log_{0,5}x=t,\;\log^2_{0,5}x=t^2\\ t^2-2t-3=0\\ D=16\\ t_1=-1,\;t_2=3\\ \log_{0,5}x=-1\Rightarrow x=0,5^{-1}=2\\ \log_{0,5}x=3\Rightarrow x=0,5^3=0,125=\frac18\\ x\in(0;\frac18)\cup(2;+\infty)" align="absmiddle" class="latex-formula">