Помогите ,пожалуйста,с заданием 2

0 голосов
36 просмотров

Помогите ,пожалуйста,с заданием 2


image

Алгебра (67 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)y'=(3x²/3)-4x+4=x²-4x+4

2)y=x^(1/2)+sin(x/2)+x²tg(2x)
y'=(1/2√x)+(cos(x/2)/2)+(2x·tg(2x)+2x²)/cos²x

3)y'=(sinx(1+sinx)-(1-cosx)·cosx)/(1+sinx)²=(sin²x+sinx-cox+cos²x)/(1+sinx)²=(sinx-cosx+1)/(1+sinx)²

4)y=(8/(x^(1/2)))-(6/x⁵)
y'=((-8·(1/2)·x^(-1/2))/x)-((-6·5x⁴)/x¹⁰)=((30x⁴)/x¹⁰)-(4/(x√x))=(30/x⁶)-(4/(x√x))

5)y'=(1/2)·(x^(-1/2))·cosx+(√x)·-sinx=(cosx/(2√x))-√x·sinx

6)y=(1+sin²(6x))^(1/2)
y'=(1/2)·(1+sin²(6x))^(-1/2)·2sin(6x)·cos(6x)·6=(6sin(6x)·cos(6x))/√(1+sin²(6x))

7)y'=2(2+(1/√x))·(-1/2)·x^(-3/2)=(-2x^(-3/2))+(1/x²)

8)y'=(-sinx(1-3sinx)-cosx·(-3cosx))/(1-3sinx)²=(-sinx+3sin²x+3cos²x)/(1-3sinx)²=(3-sinx)/(1-3sinx)²

9)y'=(2+2·sin(2x))/(2·√(2x-cos(2x)))+2x·tgx+(x²/cos²x)=(1+sin2x)/(√(2x-cos2x))+2x·tgx+(x²/cos²x)

(11.9k баллов)