Задача №5
Какое наименьшее число книг можно выдать упаковками по 5 или по 8 книг ровно тремя способами?
Задача №6
Среди задач конкурсного задания по математике есть алгебраические и геометрические. Среди них есть трудные и лёгкие. Можно ли среди них выбрать две такие задачи, которые были бы из разных разделов математики (из алгебры и геометрии) и разной трудности?
Задача №7
На четырёх стенах комнаты и на её потолке нужно наклеить различное количество снежинок так, чтобы на каждой стене была хотя бы одна снежинка, но не более 7, а суммы количеств снежинок на противоположных стенах были равны и равнялись числу снежинок на потолке. Сколько существует различных вариантов выполнения этого задания, если различные варианты отличаются числом снежинок хотя бы на одной стене?