Найти производную y= e^x/3 * 3корня из sin5x

0 голосов
13 просмотров

Найти производную y= e^x/3 * 3корня из sin5x


Математика (47 баллов) | 13 просмотров
Дан 1 ответ
0 голосов

Y'= (e^x/3 * 3√sin5x)' =
(e^x/3 )' 3√sin5x+ e^x/3 * (3√sin5x)'=
(e^x/3)*3√sin5x/3*+ e^x/3 *5cos5x/(2√sin5x) =
e^x/3*√sin5x+ e^x/3 *2,5cos5x/√sin5x. 



(28.8k баллов)