В равнобедренной трапеции ABCD известны уравнение основания AD 9x −8y−25=0, уравнение...

0 голосов
36 просмотров

В равнобедренной трапеции ABCD известны уравнение
основания AD 9x −8y−25=0, уравнение диагонали AC x-2y-5=0 и B (3;-4) Найдите координаты точки D.


Геометрия (31 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Так как трапеция равнобедренная, ее диагонали равны.
АС = BD
Координаты точки А:
9х - 8у - 25 = 0
х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2).
Точка В по условию (3; -4).
Уравнение прямой ВС 9х - 8у - 59 = 0,
Координаты точки С:
9х - 8у - 59 = 0
х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).

\Пусть координаты точки D  равны х0 и у0.

Условие равенства диагоналей:
(х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8
Так как точка D принадлежит и прямой AD, то
9х0 - 8у0 = 25.

Решая систему, получаем: х0 = 5 84/145, у0 = 3 22/145.
Ответ: D (5 84/145; 3 22/145)

(39.6k баллов)