Начать следует с аксиомы: на каждой прямой и в каждой плоскости имеются точки.Точки принято обозначать большими латинскими буквами, например, точки А и F. В свою очередь прямые линии обозначают малыми латинскими буквами, к примеру, прямые a и d.Возможны два варианта взаимного расположения прямой и точки на плоскости: либо точка лежит на прямой (в этом случае также говорят, что прямая проходит через точку), либо точка не лежит на прямой (также говорят, что точка не принадлежит прямой или прямая не проходит через точку).Для обозначения принадлежности точки некоторой прямой используют символ «». К примеру, если точка А лежит на прямой а, то можно записать . Если точка Ане принадлежит прямой а, то записывают .Справедливо следующее утверждение: через любые две точки проходит единственная прямая.Это утверждение является аксиомой и его следует принять как факт. К тому же, это достаточно очевидно: отмечаем две точки на бумаге, прикладываем к ним линейку и проводим прямую линию. Прямую, проходящую через две заданные точки (например, через точки А и В), можно обозначать двумя этими буквами (в нашем случае прямая АВ или ВА).