Треугольник АСD - прямоугольный по условию, ⇒
∠ САD=90º-60º=30º
АС- биссектриса.
∠ВАD=2*30º=60º
∠ВАD =∠CDA . Следовательно, трапеция АВСD - равнобедренная, АВ=СD.
Угол ВСA=∠ САD как накрестлежащие. Но САD=BAC⇒
Δ АВС- равнобедренный, следовательно, ВС==АВ
Пусть АВ=х ⇒
ВС=АВ=СD=х
AD=CD:cos 60º=2x
P=AB+BC+CD+AD=5x
5x=35 см
x=7 см
AB=7 см