Докажите, что если а+б+с=0, то а^3+б^3+с^3=3абс Докажите,что если а+б+c=а^2+б^2+с^2=а^3+б^3+с^3=1, то абс=0
Задание 1 (a+b+c)³=(a+b)³+3(a+b)²c+3(a+b)c²+c³ или (a+b+c)³= откуда a³+b³+c³=(a+b+c)³-3a²b-3ab²-3a²c-3b²c-3ac²-3bc²-6abc заменим (a+b+c)=0 a³+b³+c³=-3ab(a+b)-3ac(a+c)-3bc(b+c)-6abc заменим a+b=-c a+c=-b b+c=-a a³+b³+c³=-3ab(-c)-3ac(-b)-3bc(-a)-6abc a³+b³+c³=3abc+3abc+3abc-6abc a³+b³+c³=3abc что и требовалось доказать. задание 2. а+b+c=а²+b²+c²=1 a+b+c=а³+b³+c³ =1 (a+b+c)=1 Возводим обе части равенства в квадрат a²+b²+c²+2ab+2bc+2ac=1 а²+b²+c²=1 значит 2ab+2bc+2ac=0 (a+b+c)=1 Возводим обе части равенства в куб a³+b³+c³+3a²b+3ab²+3a²c+3ac²+3b²c+3bc²+6abc=1 так как а³+b³+c³=1 1+3ab(a+b)+3a²c+3ac²+3b²c+3bc²+6abc=1 3ab(a+b)+3a²c+3ac²+3b²c+3bc²+6abc=0 (*) Учитывая, что 2ab+2bc+2ac=0 , то ⇒ ab=-bc-ac ⇒ab=-c(a+b) равенство (*) примет вид 3(-с)(a+b)(a+b)+3a²c+3ac²+3b²c+3bc²+6abc=0 или -3с(a²+2ab+b²)+3a²c+3ac²+3b²c+3bc²+6abc=0 -3a²c-6abc-3b²c+3a²c+3ac²+3b²c+3b²c+6abc=0 3ac²+3b²c=0 3c(ac+bc)=0 из 2ab+2bc+2ac=0 ⇒ ac+bc=-ab 3c(-ab)=0 3abc=0 abc=0 что и требовалось доказать
спасибо!,все очень подробно
Рада, что помогла с пользой