Около единичной окружности рисуем равнобочную трапецию. Обозначим трапецию ABCD, Нижнюю левую вершину буквой A. Проведем среднюю линию трапеции и обозначим MN, M лежит на стороне AB. Центр единичной окружности обозначим O . AB=a, AD=2a, радиус окружности равен 1. Средняя линия MN=(BC+AD)/2=(a+2a)/2=3a/2=1,5a.
Надо найти величину a.
Известно, r=1. Соединим центр окружности O с точкой касания окружности на стороне AB, Точку касания обозначим P. Отрезок OP- радиус окружности и он перпендикулярен стороне AB. Продлим стороны AB, CD до пересечения. Точку пересечения назовем буквой K. Треугольник AKD-равнобедренный. BC-средняя линия треугольника, так как AD=2BC,BC//AD, как основания трапеции.. Из вершины K треугольника AKD опустим высоту KL, L- точка пересечения с основанием AD, T- точка пересечения с основанием BC. Рассмотрим два треугольника: AKL и OPK. Эти треугольники- подобные. Стороны взаимно перпендикулярны и общий угол. KL перпендикулярна AD, OP перпендикулярна AB, угол K- общий. Запишем пропорцию: AL/OP=KL/PK, AL=a, OP=1, KL= 4 (BC-средняя линия треугольника, LT- высота трапеции, LT=2, точка T лежит на средней линии треугольника, значит высота KL=4), вычислим PK. Рассмотрим треугольник OPK. OP=1 , OK=3.
PK²= OK²-OP², PK²= 3²-1²=9-1=8, PK=√8=2√2.
Подставим все величины в пропорцию.
a/1=4/2√2, a= 1·4/2√2, a= 2/√2=2·√2/√2·√2=√2, a =√2,
MN= 1,5a=1,5·√2= 3√2/2.
MN=3√2/2.