Две стороны треугольника равны 34 и 32, а медиана, проведенная к третьей, равна 17....

0 голосов
82 просмотров

Две стороны треугольника равны 34 и 32, а медиана, проведенная к третьей, равна 17. Найдите площадь треугольника.


Геометрия (1.0k баллов) | 82 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

ΔАВС: АВ=34, ВС=32, медиана ВК=17 делит сторону АС на АК=КС=АС/2
Продолжим медиану BК за точку M и  отложим отрезок КЕ= BК.
ΔАВК=ΔСКЕ по двум сторонам (АК=КС, ВК=КЕ) и углу между ними (<АКВ=<СКЕ как вертикальные) <br>Значит площадь Sавс=Sавк+Sсвк=Sске+Sсвк=Sвсе 
Площадь ΔВСЕ можно найти по ф.Герона:
Известно, что ВС=32, ВЕ=17*2=34, ЕС=АВ=34
Полупериметр р=(32+34+34)/2=50
Sвсе =√50*(50-32)(50-34)²=√50*18*16²=30*16=480
Ответ: 480

(101k баллов)
0 голосов

Медиана образует два тоеугольника, площадь первого с прямым углом первая в формуле. Площадь второго равнобедренного вторая.

(18 баллов)