В квадрате АВСD точка М ** стороне АВ и точка N ** диагонали АС расположены так, что АМ:...

0 голосов
29 просмотров

В квадрате АВСD точка М на стороне АВ и точка N на диагонали АС расположены так, что АМ: МВ = 3: 4, АN: NC = 5: 2. Докажите, что угол DNM прямой.


Математика (140k баллов) | 29 просмотров
0

задача легкая, писанины много..

0

та делаю ж...

Дан 1 ответ
0 голосов
Правильный ответ

См. рисунок.
т.М делит сторону квадрата в отнош 3:4, соответственно на отрезки 3 и 4 единицы (неважно какие размерности). Сторона квадрата -7 единиц.
т.N  делит диагональ в отношении 5:2 ( это уже не 5 и 2 единицы, это только отношение.)
Проведем перпендикуляры (красные линии). Они делят стороны в отношении тоже 5:2, но теперь на 5 и 2 единиц.
И рассмотрим получившиеся треугольники MNY, NDX,MAD
MN^{2}= 2^{2} + 5^{2} =29 \\ ND^{2} = 2^{2} + 5^{2} = 29 \\ MD^{2}= 3^{2} +7^{2}=58 \\
в треугольнике MND
MN^{2}+ND^{2}=29+29=58=MD^{2}
а такое может быть только в прямоугольном треугольнике.


image
(34.8k баллов)