Сделать проверку матрицы по формуле А^-1*A=Е, если:

0 голосов
43 просмотров

Сделать проверку матрицы по формуле А^-1*A=Е, если:


image

Математика (247 баллов) | 43 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

У вас опечатка. В матрице A^(-1) в 3 строке должно быть -9.
Не обращая внимания на подчеркивания _, это для выравнивания строк.
(6  -2  -3)*(3  -1  2) = (6*3-2*4-3*3 __ 6(-1)-2(-3)-3*0 ___ 6*2-2*3-3*2)
(-1  0   1)*(4  -3  3) = (-1*3+0*4+1*3 _-1(-1)+0(-3)+0*1_ -1*2+0*3+1*2) =
(-9  3   5)*(3   0  2) = (-9*3+3*4+5*3  -9(-1)+3(-3)+5*0 _ -9*2+3*3+5*2)

= (18-8-9 ___ -6+6-0 ___ 12-6-6) = (1 0 0)
= (-3+0+3 ___1+0+0 ____-2+0+2) = (0 1 0) = Е
= (-27+12+15_ 9-9+0 _ -18+9+10) = (0 0 1)
Да, все правильно, получается единичная матрица.

(320k баллов)