Найдите отношение площади правильного треугольника, вписанного в окружность, к площади...

0 голосов
29 просмотров

Найдите отношение площади правильного треугольника, вписанного в окружность, к площади квадрата, описанного около этой окружности.( у меня выходи корень из 3 к 8, но в вариантах ответа такого нет. помогите!)


Математика (184 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

У треугольника, вписанного в окружность, сторона a = R*√3
Площадь его S(тр) = a^2*√3/4 = R^2*3√3/4
У квадрата, описанного около окружности, сторона b = D = 2R.
Площадь его S(кв) = b^2 = 4R^2
Отношение площади треугольника к площади квадрата
S(тр) : S(кв) = (R^2*3√3/4) : (4R^2) = 3√3/16






(320k баллов)