Квадрат АВСД (АВ=ВС=СД=АД=6), диагонали АС и ВД пересекаются в точке О.
Точка К равноудалена от вершин квадрата, значит АК=ВК=СК=ДК.
Расстояние КО=12.
Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам: АО=ОС=ВО=ОД=АС/2=АВ*√2/2=6√2/2=3√2
Из прямоугольного ΔАКО найдем АК:
АК²=КО²+АО²=144+18=162
Расстояние от К до сторон квадрата - это равные перпендикуляры , опущенные на стороны. Например, перпендикуляр КН на сторону АД. В равнобедренном ΔАКД (АК=ДК) КН и высота, и медиана.
КН²=АК²-(АД/2)²=162-9=153
КН=3√17