Стороны треугольника относятся как 4:13:15, радиус вписанного в треугольник круга равен 6...

0 голосов
24 просмотров

Стороны треугольника относятся как 4:13:15, радиус вписанного в треугольник круга равен 6 . Определите площадь треугольника .


Математика (15 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Стороны треугольника a = 4x, b = 13x, c = 15x.
Полупериметр треугольника
p = (a + b + c)/2 = (4x + 13x + 15x)/2 = 16x
Площадь треугольника по формуле Герона
S = √(p(p - a)(p - b)(p - c)) = √(16x*12x*3x*x) = 4x^2*√(12*3) = 24x^2
Радиус вписанной окружности
r = S/p = 24x^2 / (16x) = 3x/2 = 6
x = 4
Стороны: a = 4x = 16, b = 13x = 52, c = 15x = 60

(320k баллов)