Диаметр окружности АВ=40, АС - хорда, составляющая с диаметром АВ угол 30. Через точку С...

0 голосов
71 просмотров

Диаметр окружности АВ=40, АС - хорда, составляющая с диаметром АВ угол 30. Через точку С проведена касательная. Найдите расстояние от точки В до касательной.


Математика (15 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Дано:
Окружность
AB - диаметр
АВ = 40
угол САВ 30
Найти:
BH 

Решение:
Пусть точка О - центр окружности, тогда отрезки АО, BO, CO являются радиусами и равны 20. 
Рассмотрим треугольник ACO , где отрезки АО и СО равны , - он  равнобедренный. Значит углы CAO и ACO равны по 30. Следовательно AOC = 120, а СОВ = 60.
Проведем перпендикуляр BH к касательной, проходящую через точку С.
Рассмотрим прямоугольную трапецию CHBO. В трапеции опустим перпендикуляр BN на сторону СО, тогда угол ОВN = 30 , а ОВ как радиус равен 20, следовательно ON = 10, а CN = CO - ON = 20 - 10 = 10. Так как ОС и BH перпендикулярны CH, а BN перпендикулярен ОС следовательно СN = BH .
Ответ:BH =10 

Если  понравилось решение , не забудьте отметить как лучшее. :-)

(278 баллов)